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Abstract: Graphs are one of the simplest models to solve real life problems using network theory. The concept of fuzzy graph theory 

and anti fuzzy graph theory are used to solve complexities, imprecisions and fuzziness in networks. The well-known fuzzy paths in 

anti fuzzy graph theory answers to max-min problems. But it is incapable of defining min-max problems. So to develop a new 

optimization technique we introduced a new concept called anti fuzzy path. By using this concept a new structure of anti fuzzy 

graphs is constructed and based on that some definitions and theorems of anti fuzzy graphs are established to study different 

dimensions of connectedness. 
 

Index Terms - anti fuzzy path, constraint of connectedness, anti fuzzy bridge, anti fuzzy cut vertex, complete anti fuzzy 

graph. 

I. INTRODUCTION 

 

  Most of the problems in real life can be visualised as graphs in the nature of vertices (objects) and edges (relationships), therefore 

is a worthy topic for problem solving strategy. While defining the problems, many of the objects, relationships or both may not be 

clear cut or difficult to handle. ie.they are fuzzy in nature. According to Blue et al ([1], [2]) there are different types of uncertainties, 

fuzziness or vagueness can occur in Graphs. Zadeh’s [14] fuzzy sets and the incorporation of this fuzzy sets to graph theory i.e. 

Fuzzy graph theory eradicates these situations in a better way. Studies of Kauffman [3] Rosenfeld [12], Yeh & bang [13] are the 

stepping stones in the development of fuzzy graph theory. Later Sunil Mathew, Modeson and Malik ([5], [6]) put forward an 

elaborate study about Fuzzy graphs. Meanwhile in 2012 Akram [7] defined a new area in fuzzy graphs known as anti fuzzy graphs. 

One of the main topics in anti fuzzy graph theory is fuzzy paths and using this concept we can solve maximum bandwidth problems 

and widest path problems. It’s inefficiency in defining min-max problems forced the development of a new concept called anti 

fuzzy path and related concepts of anti fuzzy graph. 

 In this paper we introduced anti fuzzy paths and using that we structure anti fuzzy graphs in a different direction. Then we defined 

the connectivity in anti fuzzy graphs and established some important theorems, examples and also try to analyse some real life 

situations. 

 2. Preliminaries 

Definition 2.1. Crisp Graph G* = (V, E) is a pair, where V is the nonempty set of vertices and VVE   is the set of edges. 
Definition 2.2. A fuzzy subset σ on a set X is a map σ:𝑋 → [0,1]. A fuzzy relation μ on X is a fuzzy binary relation given by 

μ:𝑋 × 𝑋 → [0,1]. Also μ is called a fuzzy relation on σ if μ (a, b) ≤ 𝜎(𝑎) 𝜎(𝑏) ∀ a, b ∈ X 𝑎𝑛𝑑  stands for minimum. Also μ is 

called an anti fuzzy relation on σ if μ (a, b) ≥ σ (a) ⋁ σ (b), ∀ a, b ∈ V 𝑎𝑛𝑑 ⋁ stands for maximum. 

Definition 2.3. A fuzzy graph G = (V, σ, μ) of a (crisp) graph G* is a triple with a pair of functions σ:𝑉 → [0,1], μ: 𝑉 × 𝑉 → [0,1] 
where V is a nonempty set of vertices, σ is a fuzzy subset of V and μ is a fuzzy relation on V× 𝑉 such that μ (a, b)≤ 𝜎(a)𝜎(𝑏), 

∀ a, b ∈ V. 
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Definition 2.4 An anti fuzzy graph 𝐺𝐴 = (V, σ, μ) of a (crisp) graph G* is a triple with a pair of functions σ:𝑉 → [0,1]  and               

 μ: 𝑉 × 𝑉 → [0,1]  where V is a non- empty set of vertices, σ is a fuzzy subset of V and μ is an anti fuzzy relation on 𝑉 × 𝑉 such 

that μ (a, b) ≥ σ (a) ⋁ σ (b), ∀ a, b ∈ V. 

Example 2.5 Let V = {u, v, w}, define σ as σ (u) = 0.4, σ (v) = 0.1, σ (w) = 0.8 and μ as μ (uv) = 0.5, μ (vw) = 0.8, μ (uw) = 0.9. 

i.e. 𝐺𝐴 = (V, σ, μ) is an anti fuzzy graph. 

 
                           Figure 1.Anti fuzzy graph 

 

Definition 2.6. Let 𝐺𝐴= (V, σ, μ) be an anti fuzzy graph. The order and size of 𝐺𝐴 is defined as ∑ 𝜎(𝑎∈𝑉 a), ∑ 𝜇(𝑎𝑏∈𝐸 ab) respectively. 
     

Definition 2.7. An anti fuzzy graph 𝐻𝐴= (V, τ, ρ) is a partial anti fuzzy sub graph of 𝐺𝐴= (V, σ, μ) if τ   σ and ρ  μ. Also τ (a) ≤ 

σ (a) ∀ u ∈V and ρ (a, b) ≤ μ (a, b) ∀a, b∈ V. 
 
Definition 2.8. An anti fuzzy graph 𝐻𝐴= (V, τ, ρ) is an anti fuzzy sub graph of 𝐺𝐴 induced by P if P  V, τ (a) = σ (a) ∀ u ∈ P and 

ρ (a, b) = μ (a, b) ∀ a, b ∈ P. 
 
Example 2.9. Let 𝐻𝐴 = (V, τ, ρ) where τ = {u, v, w} and ρ = {uv, vw} with τ (u) =0.4, τ(v) =  0.1, τ(w) = 0.8 and ρ as   ρ(uv) = 0.5, 

ρ(vw) = 0.8 , Then 𝐻𝐴= (V, τ, ρ)  is an anti fuzzy sub graph of 𝐺𝐴 (as in example 2.5).Also if  P ={u, v} and let 𝐻𝐴=(V,τ,ρ) where 

τ(u) = 0.4, τ(v) = 0.1  and ρ(uv) = 0.5 then 𝐻𝐴 is an induced sub graph of  𝐺𝐴 (as in example 2.5). 

 

Definition 2.10. An anti fuzzy sub graph 𝐻𝐴= (V, τ, ρ) of  𝐺𝐴 = (V, σ, μ) is said to span 𝐺𝐴 if σ = τ and is called a spanning sub graph 

of  𝐺𝐴.  

 
Definition 2.11. An anti fuzzy path P in an anti fuzzy graph of  𝐺𝐴 = (V, σ, μ) is a sequence of distinct vertices P: 𝑎0 𝑎1 …. 
𝑎𝑛    (except possibly  𝑎0 and 𝑎𝑛) such that μ (𝑎𝑖−1𝑎𝑖 ) >0, i = 1, 2…, n. n is called length of the anti fuzzy path P. A single vertex is 

a null length path. The consecutive pairs are the edges of P. The longest path joining is called   diameter of   P and is denoted by 

diam (a, b). The constraint of P is denoted by ⋁ 𝜇(𝑎𝑖−1𝑎𝑖).𝑛
𝑖=1 i.e.  The highest membership grade of the edge in that path. 

 
Definition 2.12. Constraint of connectedness between two vertices a& b is   𝜇∞(a, b) = inf { 𝜇𝑘(a, b) / k = 1, 2, 3⋯}, where    

 𝜇𝑘(a, b)   = {μ (𝑎𝑎1 ) ⋁μ (𝑎1𝑎2 ) ⋁μ (𝑎2𝑎3 ) ⋁ … .μ (𝑎𝑘𝑏)} i.e. The constraint of connectedness of all paths between a&b is defined 

as the minimum of the constraint of all paths between a& b and is denoted by 𝐶𝑂𝑁𝑁𝐺𝐴 (a, b). 

 
Remark. The constraint of connectedness plays the most significant role in anti fuzzy graphical structures. The ideal path between 

two vertices is the path containing the edge whose membership grade coincides with the constraint of connectedness. 
In example 2.5 constraint of connectedness between each pair of vertices as follows.   
  

 

a 

 

b 

𝐶𝑂𝑁𝑁𝐺𝐴 (a, b) 

 u v 0.5 

 u w 0.8 

  v w 0.8 

 

http://www.jetir.org/


© 2022 JETIR May 2022, Volume 9, Issue 5                                                                    www.jetir.org (ISSN-2349-5162) 

JETIR2205748 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g453 
 

Definition 2.13. An anti fuzzy graph 𝐺𝐴 is connected if any two vertices are joined by an anti fuzzy path.i.e. An anti fuzzy 

graph 𝐺𝐴 is connected if is   𝜇∞(a, b) > 0, ∀a, b∈ V. 

 
Remark. In the case of crisp graphs, if the membership grade is 1 for an edge that edge is called the weakest edge of that 𝐺𝐴. 
 
Definition 2.14. Let 𝐺𝐴= (V, σ, μ) be a connected anti fuzzy graph and 𝐺𝐴′= (V, σ', μ') be the partial fuzzy sub graph of 𝐺𝐴 obtained 

by deleting edge ab, where μ'(ab) =0 and μ'=μ for all other edges. If deletion of ab increases the constraint of connectedness between 

some pair of vertices in 𝐺𝐴 then ab is called anti fuzzy bridge. 
In the above example 2.5, removal of edges uv & vw, increases the constraint of connectedness between u and v from 0.5 to 0.9, v 

and w from 0.8 to 0.9. Hence uv, vw are anti fuzzy bridges. 
 

Definition 2.15. Let 𝐺𝐴= (V, σ, μ) be a connected anti fuzzy graph and 𝐺𝐴'= (V, σ', μ') be the partial fuzzy sub graph of 𝐺𝐴 obtained 

by deleting a vertex z, where σ'(z) = 0,   σ = σ' for all vertices except z, μ'(z, c) = 0 ∀ c ∈ V and μ' = μ for all other edges. If deletion 

of c reduces the constraint of connectedness between any pair of vertices in 𝐺𝐴 then c is called an anti fuzzy cut vertex. 
In the above example 2.5, removal of vertex v increases the constraint of connectedness between u and w from 0.8 to 0.9. Hence v 

is an anti fuzzy cut vertex. 

 
Definition 2.16. A connected anti fuzzy graph 𝐺𝐴 = (V, σ, μ) is an anti fuzzy tree if it has a partial anti fuzzy spanning sub graph 

𝐻𝐴= (V, σ, ρ), which is a tree, where all edges ab not in 𝐻𝐴, μ (ab) > 𝜌∞(a, b). 

Definition 2.17. Let 𝐺𝐴 = (V, σ, μ) is a connected anti fuzzy graph. A minimum spanning tree of 𝐺𝐴 is an anti fuzzy spanning sub 

graph 𝑇𝐴= (V, σ, ρ) which is a tree, such that (a, b) is the constraint of the unique ideal path a-b   for all a, b∈ V. 

Theorem 2.18. Let 𝐺𝐴 be an anti-fuzzy graph. Then the following statements are equivalent. 
             1. ab is an anti-fuzzy bridge. 
              2. 𝜇′∞(a, b) > 𝜇(ab). 
              3. ab is not the highest edge of any cycle. 
Proof: 
2 → 1.We have 𝜇′∞(a, b) > 𝜇 (ab). Let ab is not an anti fuzzy bridge, then 𝜇′∞(a, b) = 𝜇 (a, b) ≤ 𝜇(ab), a contradiction. 
1 → 3. Let ab is the highest edge of a cycle. Consider that cycle as PP' where P is the path containing the edge ab and P' is the path 

not containing ab but at least as strong as P by using the remaining part of the cycle as a path from a to b. Thus ab can’t be a fuzzy 

bridge. 
3 → 2. Let ab is not the highest edge of any cycle. If 𝜇′∞(a, b) ≤ 𝜇(ab), then the constraint of ab is greater than the constraint of the 

path P not involving ab. This P and ab forms a cycle with the highest edge ab.a contradiction. 
 
Theorem 2.19. A vertex c of an anti fuzzy graph 𝐺𝐴 = (V, σ, μ)   is an anti fuzzy cut vertex iff c is an internal vertex of every minimum 

spanning tree of 𝐺𝐴.  
Proof: 
Let 𝐺𝐴  be an anti fuzzy graph and c be an anti fuzzy cut vertex. Then a, b distinct from c such that c is in every ideal path a-b. Now 

all the minimum spanning trees of 𝐺𝐴 contains a unique ideal path a-b and hence c is an internal vertex of every minimum spanning 

tree.  
Conversely let c be an internal vertex of every minimum spanning tree. Let T be a minimum spanning tree and let ac and cb be 

edges in T. Note that a, c, b is the ideal path a-b in T. If possible assume that c is not an anti fuzzy cut vertex. Consider all the paths 

between every pair of vertices a, b. It is clear that there exists at least one ideal path a-b not containing c. Take one such a-b path P 

which clearly contains the edges not in T. Now without loss of generality, let 𝜇∞(a, b) ≤ 𝜇(ab) in T. Then edges in P have constraint 

≤ 𝜇(ab). Removal of ac and adding P in T will result another minimum spanning tree of 𝐺𝐴 of which w is an end vertex, which is a 

contradiction to our assumption. 
 
Corollary 2.20. Every anti fuzzy graph 𝐺𝐴  has at least two vertices which are not anti fuzzy cut vertices. 
 
Proof:  
From the above theorem 2.19 the end vertices of a minimum spanning tree T of 𝐺𝐴  cannot be an anti fuzzy cut vertex. Hence the 

result. 
 
Theorem 2.21.An edge ab of an anti fuzzy graph 𝐺𝐴= (V, σ, μ) is an anti fuzzy bridge iff ab is in every minimum spanning tree of 𝐺𝐴 

Proof: 
Let ab be an anti fuzzy bridge of 𝐺𝐴 .Then the edge ab is in the unique ideal path a-b and hence is in every minimum spanning tree 

of 𝐺𝐴. 
Conversely, let ab be in every minimum spanning tree of 𝐺𝐴  and assume that ab is not an anti fuzzy bridge. Then ab is the highest 

edge of some cycle in 𝐺𝐴  and 𝜇∞(a, b) ≤ 𝜇(ab), which implies that there is at least one minimum spanning tree of  𝐺𝐴  not containing 

ab.a contradiction. 
 
Theorem 2.22. Let 𝐺𝐴= (V, σ, μ) be an anti fuzzy graph such that (V, σ*, μ*) is a cycle. Then a vertex of  𝐺𝐴  is an anti fuzzy cut 

vertex iff it is a common vertex of two anti fuzzy bridges. 
Proof: 
Let c be an anti fuzzy cut vertex of 𝐺𝐴.Then there exists a and b other than c such that c is on every ideal path a-b. Because  
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𝐺𝐴* = (V, σ*, μ*) is a cycle  there exists only one ideal path a-b containing c and all  its edges are anti fuzzy bridges. Thus c is a 

common vertex of two anti fuzzy bridges.  
Conversely suppose c be a common vertex of two anti fuzzy bridges ac and cb. Then both ac and cb are not the highest edges of 𝐺𝐴  

.Also the path from a to b not containing edges ac and cb has constraint greater than μ (ac) ⋁ μ (cb). Hence the ideal path a-b is the 

path a, c, b and 𝜇∞(a, b) = μ (ac) ⋁ μ (cb). Thus c is an anti fuzzy cut vertex. 
 
Theorem 2.23. If c is a common vertex of at least two anti fuzzy bridges, then c is an anti fuzzy cut vertex. 
 
Proof: 
Let  𝑎1c and c𝑎2 be two anti fuzzy bridges. Then there exists a, b such that 𝑎1c is on every ideal path a-b. If c is distinct from a 

and b, then it follows that c is an anti fuzzy cut vertex. Next suppose one of a, b is c so that  𝑎1c is on every ideal a-c path or c𝑎2 is 

on every ideal path c-b. Suppose that c is not an anti fuzzy cut vertex.  Then between every two vertices there exists at least one 
ideal path joining 𝑎1& 𝑎2 not containing c. This path together with 𝑎1c & c𝑎2 forms a cycle. We now consider two cases .First 

suppose that𝑎1, c, 𝑎2 is not the ideal path. Then clearly one of 𝑎1c, c𝑎2  or both become the highest edges of a cycle which contradicts 

that 𝑎1c and c𝑎2 are anti fuzzy bridges. Second suppose that𝑎1, c, 𝑎2 is also an ideal path joining 𝑎1to𝑎2. Then 𝜇(𝑎1, 𝑎2) =μ(𝑎1c) 

⋁ μ(c𝑎2) the constraint of P. Thus edges of P are at least equals μ(𝑎1c) and μ (c𝑎2), which implies that 𝑎1c, c𝑎2 are both the 

highest edges of a cycle, which is a contradiction. 
 
Example 2.24. This example shows that the condition in theorem 2.23 is not necessary. Let V = {u, v, w, z} and X = {uv, vw, wz, 

zu, uw, vz}with 𝜎(x)= 0.1  for all x∈V , and   is defined by  μ(uv ) = 0.2, μ(uw) = 0.1, μ(wz) = 0.7, μ(vz) = 0.1, μ(vw) = 0.2,  μ(uz) = 

0.7 and . Clearly v is an anti cut vertex. However uw and vz are the only anti-fuzzy bridges. [Figure 2].

 
                                         Figure 2 
 
Theorem 2.25. If ab is an anti fuzzy bridge, then 𝜇∞(a, b) = μ (ab). 

 
Proof: Suppose that ab is an anti fuzzy bridge and that 𝜇∞(a, b) < μ (ab). Then there exists an ideal path a-b with constraint less 

than μ (ab) and all edges of this ideal path have constraints less than μ (ab). Also this path together with the edge ab forms a cycle 

in which ab is the highest edge, contradicting that ab is an anti fuzzy bridge. 
                            
                                           3. Complete Anti fuzzy Graph (CAFG) 
 
Definition 3.1. A complete anti fuzzy graph is an anti fuzzy graph 𝐺𝐴= (V, σ, μ) such that μ (ab) = σ (a) ⋁ σ (b), for all a, b∈σ *.  
 
Example 3.2: Let A = {u, v, w, z} and X = {uv, vw, wz, zu, uw, vz} with σ (u) =0.6, σ (v) =0.5, σ (w) =0.1 and σ (z) =0.7. Let μ 

X is defined by μ (uv) = μ (uw) = 0.6, μ (vz) = μ (wz) = μ (uz) = 0.7 and μ (vw) = 0.5. Clearly (V, σ, μ) is a complete anti fuzzy 

graph. [Figure 3]. 
 

 
                             Figure 3.CAFG 

 
Theorem 3.3. If 𝐺𝐴= (V, σ, μ) is a complete anti fuzzy graph, then for any edge ab ∈ μ*, 𝜇∞(a, b) = μ (a, b). 
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Proof:  
By definition 𝜇2(a, b) = ⋀ {𝜇 (𝑎 𝑐) ⋁ 𝜇(𝑐 𝑏)} 𝑐∈𝜎∗  
                                     = ⋀ (σ (a) ⋁ σ (b) ⋁ σ(c))  
                                     = σ (a) ⋁ σ (b) = μ (ab).  
Similarly,      𝜇3(a, b) = μ(ab) and in the same way we can show that 𝜇𝑘(a,b)= μ(ab)for all positive integers k thus 

                        𝜇∞(a, b ) = inf (𝜇𝑘(a,b) / for all integers k ≥ 1) = μ (a, b). 
 
Corollary 3.4. A complete anti fuzzy graph 𝐺𝐴 has no anti fuzzy cut vertices. 
 
Example 3.5: This example shows that condition in Corollary 3.4 is not necessary. Let V = {u, v, w, z} and X = {uv, vw, wz, zu, 

uw, vz} with σ (u) =0.3, If σ (v) = σ (w) = σ (z) = 0.1. Let μ is defined by μ(uv) = μ(zu) = μ(uw) = 0.5, μ(vw) = 0.1 and         

μ(wz)=μ(vz)=0.3.Then 𝜇∞=μ and 𝐺𝐴 has no antifuzzy cut vertices, but is not complete.[Figure4]. 

      
                          Figure 4. 
 
Theorem 3.6. Let 𝐺𝐴= (V, σ, μ) be a CAFG with | σ*|=n. Then 𝐺𝐴 has an anti fuzzy bridge iff there exists a decreasing sequences 

{𝑡1, 𝑡2……} such that  𝑡𝑛−2> 𝑡𝑛−1≥𝑡𝑛, where 𝑡𝑖= σ (𝑎𝑖) for i = 1, 2… n. Also the edge 𝑎𝑛−1𝑎𝑛 is the anti fuzzy bridge of 𝐺𝐴 .  
Proof: 
Assume that  𝐺𝐴 = (V, σ, μ) is a complete anti fuzzy graph and 𝐺𝐴 has an anti fuzzy bridge ab. Now μ (ab) = σ (a) ⋁ σ (b) without 
loss of generality let σ (a) ≥ σ (b), so that μ (ab) = σ (a). Note that ab is not a highest edge of any cycle in 𝐺𝐴  . It is required to 

prove that σ (a) < σ(c) for all c ≠ b. On the contrary, assume that there is at least one vertex c ≠ b such that σ (a) ≥ σ(c). Now 

consider the cycle C: a, b, c, a. Then μ(ab) = μ(ac) = σ(a) and  μ(bc)= σ(b) if σ(a) = σ(b) or  σ(a) > σ(b) ≥ σ(c)  and μ(bc)= σ(c)  if 
σ(a) > σ(c) > σ(b). In either case the edge ab becomes the highest edge of a cycle and by theorem 3.15, ab cannot be an anti fuzzy 

bridge. Conversely let 𝑡1 ≥ 𝑡2 ≥ ……..≥ 𝑡𝑛−2 ≥ 𝑡𝑛−1 ≥  𝑡𝑛  and 𝑡𝑖= σ (𝑢𝑖) for all i. 
Claim 1: Edge is the anti fuzzy bridge of 𝐺𝐴 . 
We have μ (𝑎𝑛−1𝑎𝑛) = σ (𝑎𝑛−1) ⋁ σ (𝑎𝑛) = σ (𝑎𝑛−1) and by hypothesis, all other edges of 𝐺𝐴 will have constraint strictly greater 

than that of σ (𝑎𝑛−1). Thus the edge 𝑎𝑛−1𝑎𝑛 is not the highest edge of any cycle in 𝐺𝐴 and by theorem 3.15,  𝑎𝑛−1𝑎𝑛 is an anti fuzzy 

bridge. 
 

 

 

Conclusion 
 
     This paper has investigated and explored the realm of anti fuzzy graphs and its properties in a new direction. We have analysed 

some concepts like anti fuzzy paths, anti fuzzy bridges, anti fuzzy cut vertices and complete anti fuzzy graphs. By using the 

constraint of connectedness property some important results are proved. We can extend these findings as a future work for the 

google map problems in traffic system. . 
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